Abstract

We jointly select the fronthaul links and optimize the transmit precoding matrices for maximizing the energy efficiency (EE) of a multiuser multiple-input multiple-output-aided distributed antenna system. The fronthaul link’s power consumption is taken into consideration, which is assumed to be proportional to the number of active fronthaul links quantified by using indicator functions. Both the rate requirements and the power constraints of the remote access units are considered. Under realistic power constraints, some of the users cannot be admitted. Hence, we formulate a two-stage optimization problem. In Stage I, a novel user selection method is proposed for determining the maximum number of admitted users. In Stage II, we deal with the EE optimization problem. First, the indicator function is approximated by a smooth concave logarithmic function. Second, a triple-layer iterative algorithm is proposed for solving the approximated EE optimization problem, which is proved to converge to the Karush–Kuhn–Tucker conditions of the smoothened EE optimization problem. To further reduce the complexity, a single-layer iterative algorithm is conceived, which guarantees convergence. Our simulation results show that the proposed user selection algorithm approaches the performance of the exhaustive search method. Finally, the proposed algorithms are capable of achieving an order of magnitude higher EE than its conventional counterpart operating without considering link selection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.