Abstract
The joint frequency rating index accounts for 40% of the weight in the hundred-mark Rock Mass Rating 2014 (RMR14) classification system. However, owning to the natural variations of in-situ rock mass, this parameter is difficult for site engineers to obtain along the tunnel axis, especially in groundwater-rich conditions or prior to any disturbances made to rock mass. In this study, we propose an equivalent joint frequency, expressed quantitatively in terms of the ratio of the P-wave propagation velocity in the rock mass to that of the intact rocks, which is mainly based on engineering statistics easily obtained from the Chinese National Standard, GB/T 50218. We also explore a new rating method, based on field P-wave propagation velocity tests, for the joint frequency in the RMR14 classification system. Literature from in-situ databases is discussed to verify the applicability of the proposed rating method. The verifications demonstrate that, compared with the results of on-site parameters ratings as per the RMR classification system, the new rating method using P-wave propagation velocity can obtain a certain degree of accuracy. Hence, this enables the presentation of the primary state of integrity of an in-situ rock mass in accordance with the RMR14 classification system, through simple and non-destructive field P-wave velocity tests.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.