Abstract

Joint frequency and DOA estimation of more sources than the number of sensors is considered in this paper. We assume a simple uniform linear array (ULA) and propose to employ a multiple delay channel network at every sensor, which can easily be realized by sampling at a slightly higher rate. By combining the outputs of the ULA and the delay network, we show that the manifold matrix is analogous to that of a uniform rectangular array, and hence we appropriately refer to this array as the space-time array. Further, estimation of parameters via the rotational invariance technique (ESPRIT) based algorithm referred to as space-time (ST)-Euler-ESPRIT is proposed. ST-Euler-ESPRIT, similar to well known unitary-ESPRIT provides automatically paired frequencies and their DOAs. We further show that with the proposed approach for a M element ULA and with N−1 delay channel, O(MN) frequencies and their DOAs can be estimated. The performance of ST-Euler-ESPRIT is verified by simulations, where it shows consistently better performance than the unitary-ESPRIT algorithm under noisy conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call