Abstract

This paper proposes a model-based diagnosis approach to detect and isolate intermittent faults in complex systems that operate under feedback control. The feedback control attempts to compensate for model uncertainties and deviations from nominal behavior, but these uncertainties are crucial for accurate fault diagnosis. We focus on faults that are observable only in a particular region of the state space, which is rarely reached in nominal behavior. To address this, we present an approach that considers both control requirements and diagnosis uncertainty in an optimization problem similar to model-predictive control. We compute perturbations on control signals that forces the system to reach states where faults are detectable. We apply our approach to a quadrotor system under motion feedback control, demonstrating the effectiveness of our method. Our approach has the potential to improve the resilience of complex systems by quickly detecting and recovering from disruptive events.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call