Abstract
Infrared object tracking is a key technology for infrared imaging guidance. Blurred imaging, strong ego-motion and frequent occlusion make it difficult to maintain robust tracking. We observe that the features trained on ImageNet are not suitable for aircraft tracking with infrared imagery. In addition, for deep feature-based tracking, the main computational burden comes from the feedforward pass through the pretrained deep network. To this end, we present an airborne infrared target tracking algorithm that employs feature embedding learning and correlation filters to obtain improved performance. We develop a shallow network and a contrastive center loss function to learn the prototypical representation of the aircraft in the embedding space. The feature embedding module is lightweight and integrated into the efficient convolution operator framework for aircraft tracking. Finally, to demonstrate the effectiveness of our tracking algorithm, we conduct extensive experiments on airborne infrared imagery and benchmark trackers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.