Abstract
We present an approach to simultaneously solve the two problems of face alignment and 3D face reconstruction from an input 2D face image of arbitrary poses and expressions. The proposed method iteratively and alternately applies two sets of cascaded regressors, one for updating 2D landmarks and the other for updating reconstructed pose-expression-normalized (PEN) 3D face shape. The 3D face shape and the landmarks are correlated via a 3D-to-2D mapping matrix. In each iteration, adjustment to the landmarks is firstly estimated via a landmark regressor, and this landmark adjustment is also used to estimate 3D face shape adjustment via a shape regressor. The 3D-to-2D mapping is then computed based on the adjusted 3D face shape and 2D landmarks, and it further refines the 2D landmarks. An effective algorithm is devised to learn these regressors based on a training dataset of pairing annotated 3D face shapes and 2D face images. Compared with existing methods, the proposed method can fully automatically generate PEN 3D face shapes in real time from a single 2D face image and locate both visible and invisible 2D landmarks. Extensive experiments show that the proposed method can achieve the state-of-the-art accuracy in both face alignment and 3D face reconstruction, and benefit face recognition owing to its reconstructed PEN 3D face shapes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.