Abstract

This paper is focused on noncooperative target position estimation via the joint use of two-dimensional (2-D) hyperbolic and elliptic passive location techniques based on time difference of arrival (TDOA) and passive coherent locator (PCL) measurements, respectively. A fusion strategy is laid down at the signal processing level to obtain a reliable estimate of the current target position. With reference to the scenario with a single transmitter of opportunity, the mathematical model for joint exploitation of TDOA and PCL strategies is formulated. Then, the Cramer–Rao lower bound (CRLB) for the Cartesian coordinates of the target is established and the theoretical performance gains achievable over the localization technique using only TDOA or PCL observations are assessed. Finally, TDOA-PCL hybrid 2-D localization algorithms are provided and their performance in terms of root-mean-square error is compared with the square root of the CRLB.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call