Abstract
It is not easy to estimate self-mixing interferometry parameters, namely, the optical feedback factor and the linewidth enhancement factor from the self-mixing signals (SMSs) affected by noise such as speckle. These SMSs call for normalization, which is not only difficult, but also apt to distort the intrinsic information of the signals, thereby resulting in incorrect estimation of the parameters and the displacement reconstruction. In this paper, we present what we believe is a novel normalization method we call "local normalization," which enables more exact and simpler estimation and displacement retrieval compared to previous methods, for it is based on an analytic relation instead of approximation. The method is very noise-proof, and especially speckle-noise-proof as well. The method proposed can be applied to moderate and strong feedback regimes. The simplicity and accuracy of the method will provide a fine tool for a low-cost self-mixing displacement sensor with a high resolution of about 40 nm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.