Abstract
Despite many attempts in the last few years, automatic analysis of social scenes captured by wide-angle camera networks remains a very challenging task due to the low resolution of targets, background clutter and frequent and persistent occlusions. In this paper, we present a novel framework for jointly estimating (i) head, body orientations of targets and (ii) conversational groups called F-formations from social scenes. In contrast to prior works that have (a) exploited the limited range of head and body orientations to jointly learn both, or (b) employed the mutual head (but not body) pose of interactors for deducing F-formations, we propose a weakly-supervised learning algorithm for joint inference. Our algorithm employs body pose as the primary cue for F-formation estimation, and an alternating optimization strategy is proposed to iteratively refine F-formation and pose estimates. We demonstrate the increased efficacy of joint inference over the state-of-the-art via extensive experiments on three social datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.