Abstract
Coronavirus disease 2019 (COVID-19) has caused a heavy disease burden globally. The impact of process and timing of data collection on the accuracy of estimation of key epidemiological distributions are unclear. Because infection times are typically unobserved, there are relatively few estimates of generation time distribution. We developed a statistical framework to jointly estimate generation time and incubation period from human-to-human transmission pairs, accounting for sampling biases. We applied the framework on 80 laboratory-confirmed human-to-human transmission pairs in China. We further inferred the infectiousness profile, serial interval distribution, proportions of presymptomatic transmission, and basic reproduction number (R0) for COVID-19. The estimated mean incubation period was 4.8 days (95% confidence interval [CI], 4.1-5.6), and mean generation time was 5.7 days (95% CI, 4.8-6.5). The estimated R0 based on the estimated generation time was 2.2 (95% CI, 1.9-2.4). A simulation study suggested that our approach could provide unbiased estimates, insensitive to the width of exposure windows. Properly accounting for the timing and process of data collection is critical to have correct estimates of generation time and incubation period. R0 can be biased when it is derived based on serial interval as the proxy of generation time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.