Abstract

Joint extraction of entities and relations is a task that extracts the entity mentions and semantic relations between entities from the unstructured texts with one single model. Existing entity and relation extraction datasets usually rely on distant supervision methods which cannot identify the corresponding relations between a relation and the sentence, thus suffers from noisy labeling problem. We propose a hybrid deep neural network model to jointly extract the entities and relations, and the model is also capable of filtering noisy data. The hybrid model contains a transformer-based encoding layer, an LSTM entity detection module and a reinforcement learning-based relation classification module. The output of the transformer encoder and the entity embedding generated from the entity detection module are combined as the input state of the reinforcement learning module to improve the relation classification and noisy data filtering. We conduct experiments on the public dataset produced by the distant supervision method to verify the effectiveness of our proposed model. Different experimental results show that our model gains better performance on entity and relation extraction than the compared methods and also has the ability to filter noisy sentences.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.