Abstract

Feature selection has aroused considerable research interests during the last few decades. Traditional learning-based feature selection methods separate embedding learning and feature ranking. In this paper, we propose a novel unsupervised feature selection framework, termed as the joint embedding learning and sparse regression (JELSR), in which the embedding learning and sparse regression are jointly performed. Specifically, the proposed JELSR joins embedding learning with sparse regression to perform feature selection. To show the effectiveness of the proposed framework, we also provide a method using the weight via local linear approximation and adding the l2,1 -norm regularization, and design an effective algorithm to solve the corresponding optimization problem. Furthermore, we also conduct some insightful discussion on the proposed feature selection approach, including the convergence analysis, computational complexity, and parameter determination. In all, the proposed framework not only provides a new perspective to view traditional methods but also evokes some other deep researches for feature selection. Compared with traditional unsupervised feature selection methods, our approach could integrate the merits of embedding learning and sparse regression. Promising experimental results on different kinds of data sets, including image, voice data and biological data, have validated the effectiveness of our proposed algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.