Abstract

Mackenzie Trough, a cross shelf canyon in the Beaufort Sea shelf, is shown to be a site of enhanced shelf-break exchange via upwelling caused by wind- and ice-driven ocean surface-stresses. To characterize flow within the Trough, we analyze current meter mooring data and concurrent wind and ice velocity data from 1993 to 1996, and show CTD/ADCP sections from 2002. Mackenzie Trough is approximately 400 m deep and 60 km wide, but dynamically it is only 2–3 times the baroclinic Rossby radius at its mouth, and patterns of upwelling and downwelling flow within the canyon are similar to dynamically ‘narrow’ canyons. Large upwelling events within the canyon are associated with wind in the short ice-free summer season and with ice motion in winter. Ice motion does not necessarily reflect the wind-stress because of internal ice stresses that differentially block downwelling-causing ice motion. The asymmetry between upwelling and downwelling flow within the canyon combined with the predominance of upwelling-causing ice motion, suggests that Mackenzie Trough is a conduit for deeper, nutrient-rich water to the shelf.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.