Abstract

The site frequency spectrum (SFS) is an important statistic that summarizes the molecular variation in a population, and is used to estimate population-genetic parameters and detect natural selection. Here, we study the SFS in a randomly mating, diploid population in which both the population size and selection coefficient vary periodically with time using a diffusion theory approach, and derive simple analytical expressions for the time-averaged SFS in slowly and rapidly changing environments. We show that for strong selection and in slowly changing environments where the population experiences both positive and negative cycles of the selection coefficient, the time-averaged SFS differs significantly from the equilibrium SFS in a constant environment. The deviation is found to depend on the time spent by the population in the deleterious part of the selection cycle and the phase difference between the selection coefficient and population size, and can be captured by an effective population size.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call