Abstract
In this paper, we study two joint distributions of the numbers of success runs of several lengths in a sequence ofn Bernoulli trials arranged on a line (linear sequence) or on a circle (circular sequence) based on four different enumeration schemes. We present formulae for the evaluation of the joint probability functions, the joint probability generating functions and the higher order moments of these distributions. Besides, the present work throws light on the relation between the joint distributions of the numbers of success runs in the circular and linear binomial model. We give further insights into the run-related problems arisen from the circular sequence. Some examples are given in order to illustrate our theoretical results. Our results have potential applications to other problems such as statistical run tests for randomness and reliability theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annals of the Institute of Statistical Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.