Abstract

Motivated by a neuronal modeling problem, a bivariate Wiener process with two independent components is considered. Each component evolves independently until one of them reaches a threshold value. If the first component crosses the threshold value, it is reset while the dynamics of the other component remains unchanged. But, if this happens to the second component, the first one has a jump of constant amplitude; the second component is then reset to its starting value and its evolution restarts. Both processes evolve once again until one of them reaches again its boundary. In this work, the coupling of the first exit times of the two connected processes is studied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.