Abstract

Numerous intelligent methods have been developed to approach the challenges of fault diagnosis. However, due to the different distributions of training samples and test samples, and the lack of information on test samples, most of these methods cannot directly handle the unsupervised cross-domain fault diagnosis issues. In this paper, a joint distribution adaptation network with adversarial learning is developed to effectively tackle the mentioned fault diagnosis issues. Firstly, deep convolutional neural network (CNN) is constructed to extract the features of training samples and test samples. Secondly, since the joint maximum mean discrepancy (JMMD) cannot precisely measure the joint distribution discrepancy between different domains, an improved joint maximum mean discrepancy (IJMMD) is proposed to accurately match the feature distributions. Finally, adversarial domain adaptation is also developed to help the constructed CNN to extract the domain-invariant features. Therefore, the proposed method can achieve precisely distribution matching, and extract the category-discriminative and domain-invariant features between the source and target domains. Substantial transfer fault diagnosis cases based on three rolling bearing datasets fully demonstrate the effectiveness and generalization ability of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.