Abstract

Dispatching and cooperative trajectory planning for multiple autonomous forklifts in a warehouse is a widely applied research topic. The conventional methods in this domain regard dispatching and planning as isolated procedures, which render the overall motion quality of the forklift team imperfect. The dispatching and planning problems should be considered simultaneously to achieve optimal cooperative trajectories. However, this approach renders a large-scale nonconvex problem, which is extremely difficult to solve in real time. A joint dispatching and planning method is proposed to balance solution quality and speed. The proposed method is characterized by its fast runtime, light computational burden, and high solution quality. In particular, the candidate goals of each forklift are enumerated. Each candidate dispatch solution is measured after concrete trajectories are generated via an improved hybrid A* search algorithm, which is incorporated with an artificial neural network to improve the cost evaluation process. The proposed joint dispatching and planning method is computationally cheap, kinematically feasible, avoids collisions with obstacles/forklifts, and finds the global optimum quickly. The presented motion planning strategy demonstrates that the integration of a neural network with the dispatching approach leads to a warehouse filling/emptying mission completion time that is 2% shorter than the most efficient strategy lacking machine-learning integration. Notably, the mission completion times across these strategies vary by approximately 15%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call