Abstract

Sound source proximity and distance estimation are of great interest in many practical applications, since they provide significant information for acoustic scene analysis. As both tasks share complementary qualities, ensuring efficient interaction between these two is crucial for a complete picture of an aural environment. In this paper, we aim to investigate several ways of performing joint proximity and direction estimation from binaural recordings, both defined as coarse classification problems based on Deep Neural Networks (DNNs). Considering the limitations of binaural audio, we propose two methods of splitting the sphere into angular areas in order to obtain a set of directional classes. For each method we study different model types to acquire information about the direction-of-arrival (DoA). Finally, we propose various ways of combining the proximity and direction estimation problems into a joint task providing temporal information about the onsets and offsets of the appearing sources. Experiments are performed for a synthetic reverberant binaural dataset consisting of up to two overlapping sound events.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.