Abstract

The Phasor Measurement Unit (PMU) with a GPS signal receiver is a synchronized sensor widely used for power system state estimation. While the GPS receiver ensures time accuracy, it is vulnerable to network attacks. GPS spoofing attacks can alter the phase angle of PMU measurement signals and manipulate system states. This paper derives a power system state model based on PMUs under GPS spoofing attacks, according to the characteristics of changes in bus voltages and branch currents after GSA. Based on the characteristics of this model, a detection and correction algorithm for attacked data is proposed to detect GSA and correct attacked measurements. The corrected measurements can be used for power system state estimation. Simulation results on the IEEE 14-bus system show that the proposed algorithm improves the accuracy of state estimation under one or multiple GSAs, especially when multiple GSAs are present, compared to classical Weighted Least Squares Estimation (WLSE) and Alternating Minimization (AM) algorithms. Further research indicates that this algorithm is also applicable to large-scale networks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call