Abstract

Non-Gaussian impulsive noise in marine environments strongly influences the detection of weak spectral lines. However, existing detection algorithms based on the Gaussian noise model are futile under non-Gaussian impulsive noise. Therefore, a deep-learning method called AINP+LR-DRNet is proposed for joint detection and the reconstruction of weak spectral lines. First, non-Gaussian impulsive noise suppression was performed by an impulsive noise preprocessor (AINP). Second, a special detection and reconstruction network (DRNet) was proposed. An end-to-end training application learns to detect and reconstruct weak spectral lines by adding into an adaptive weighted loss function based on dual classification. Finally, a spectral line-detection algorithm based on DRNet (LR-DRNet) was proposed to improve the detection performance. The simulation indicated that the proposed AINP+LR-DRNet can detect and reconstruct weak spectral line features under non-Gaussian impulsive noise, even for a mixed signal-to-noise ratio as low as −26 dB. The performance of the proposed method was validated using experimental data. The proposed AINP+LR-DRNet detects and reconstructs spectral lines under strong background noise and interference with better reliability than other algorithms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call