Abstract

In this work, we propose a novel Convolutional Neural Network (CNN) architecture for the joint detection and matching of feature points in images acquired by different sensors using a single forward pass. The resulting feature detector is tightly coupled with the feature descriptor, in contrast to classical approaches (SIFT, etc.), where the detection phase precedes and differs from computing the descriptor. Our approach utilizes two CNN subnetworks, the first being a Siamese CNN and the second, consisting of dual non-weight-sharing CNNs. This allows simultaneous processing and fusion of the joint and disjoint cues in the multimodal image patches. The proposed approach is experimentally shown to outperform contemporary state-of-the-art schemes when applied to multiple datasets of multimodal images. It is also shown to provide repeatable feature points detections across multi-sensor images, outperforming state-of-the-art detectors. To the best of our knowledge, it is the first unified approach for the detection and matching of such images.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.