Abstract

The problem of jointly detecting multiple objects and estimating their states from image observations is formulated in a Bayesian framework by modeling the collection of states as a random finite set. Analytic characterizations of the posterior distribution of this random finite set are derived for various prior distributions under the assumption that the regions of the observation influenced by individual objects do not overlap. These results provide tractable means to jointly estimate the number of states and their values from image observations. As an application, we develop a multi-object filter suitable for image observations with low signal-to-noise ratio (SNR). A particle implementation of the multi-object filter is proposed and demonstrated via simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.