Abstract
In millimeter-wave communication systems with large-scale antenna arrays, conventional digital beamforming may not be cost-effective. A promising solution is the implementation of hybrid beamforming techniques, which consist of low-dimensional digital beamforming followed by analog radio frequency (RF) beamforming. This work studies the optimization of hybrid beamforming in the context of a cloud radio access network (C-RAN) architecture. In a C-RAN system, digital baseband signal processing functionalities are migrated from remote radio heads (RRHs) to a baseband processing unit (BBU) in the “cloud” by means of finite-capacity fronthaul links. Specifically, this work tackles the problem of jointly optimizing digital beamforming and fronthaul quantization strategies at the BBU, as well as RF beamforming at the RRHs, with the goal of maximizing the weighted downlink sum-rate. Fronthaul capacity and per-RRH power constraints are enforced along with constant modulus constraints on the RF beamforming matrices. An iterative algorithm is proposed that is based on successive convex approximation and on the relaxation of the constant modulus constraint. The effectiveness of the proposed scheme is validated by numerical simulation results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.