Abstract

The purpose of this study was to use computational modeling to determine if surgical correction of hip dysplasia restores hip contact mechanics to those of asymptomatic, radiographically normal hips. Discrete element analysis (DEA) was used to compute joint contact stresses during the stance phase of normal walking gait for 10 individuals with radiographically normal, asymptomatic hips and 10 age- and weight-matched patients with acetabular dysplasia who underwent periacetabular osteotomy (PAO). Mean and peak contact stresses were higher (p < 0.001 and p = 0.036, respectively) in the dysplastic hips than in the matched normal hips. PAO normalised standard radiographic measurements and medialised the location of computed contact stress within the joint. Mean contact stress computed in dysplastic hips throughout the stance phase of gait (median 5.5 MPa, [IQR 3.9-6.1 MPa]) did not significantly decrease after PAO (3.7 MPa, [IQR 3.2-4.8]; p = 0.109) and remained significantly (p < 0.001) elevated compared to radiographically normal hips (2.4 MPa, [IQR 2.2-2.8 MPa]). Peak contact stress demonstrated a similar trend. Joint contact area during the stance phase of gait in the dysplastic hips increased significantly (p = 0.036) after PAO from 395 mm2 (IQR 378-496 mm2) to 595 mm2 (IQR 474-660 mm2), but remained significantly smaller (p = 0.001) than that for radiographically normal hips (median 1120 mm2, IQR 853-1444 mm2). While contact mechanics in dysplastic hips more closely resembled those of normal hips after PAO, the elevated contact stresses and smaller contact areas remaining after PAO indicate ongoing mechanical abnormalities should be expected even after radiographically successful surgical correction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call