Abstract

Eco-driving aims to enhance vehicle efficiency by optimizing speed profiles and driving patterns. However, ensuring safe following distances during eco-driving can lead to excessive use of lithium-ion batteries (LIBs), causing accelerated battery wear and potential safety concerns. This study addresses this issue by proposing a novel, multi-physics-constrained cruise control strategy for intelligently connected electric vehicles (EVs) using deep reinforcement learning (DRL). Integrating a DRL framework with an electrothermal model to estimate unmeasurable states, this strategy simultaneously manages battery degradation and thermal safety while maintaining safe following distances. Results from hardware-in-the-loop simulation testing demonstrated that this approach reduced overall driving costs by 18.72%, decreased battery temperatures by 4 °C to 8 °C in high-temperature environments, and reduced state-of-health (SOH) degradation by up to 46.43%. These findings highlight the strategy’s superiority in convergence efficiency, battery thermal safety, and cost reduction compared to existing methods. This research contributes to the advancement of eco-driving practices, ensuring both vehicle efficiency and battery longevity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.