Abstract

Recent developments of edge computing and content caching in wireless networks enable the Intelligent Transportation System (ITS) to provide high-quality services for vehicles. However, a variety of vehicular applications and time-varying network status make it challenging for ITS to allocate resources efficiently. Artificial intelligence algorithms, owning the cognitive capability for diverse and time-varying features of Internet of Connected Vehicles (IoCVs), enable an intent-based networking for ITS to tackle the above-mentioned challenges. In this paper, we develop an intent-based traffic control system by investigating Deep Reinforcement Learning (DRL) for 5G-envisioned IoCVs, which can dynamically orchestrate edge computing and content caching to improve the profits of Mobile Network Operator (MNO). By jointly analyzing MNO's revenue and users' quality of experience, we define a profit function to calculate the MNO's profits. After that, we formulate a joint optimization problem to maximize MNO's profits, and develop an intelligent traffic control scheme by investigating DRL, which can improve system profits of the MNO and allocate network resources effectively. Experimental results based on real traffic data demonstrate our designed system is efficient and well-performed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.