Abstract

This paper considers distribution systems with a high penetration of distributed, renewable generation and addresses the problem of incorporating the associated uncertainty into the optimal operation of these networks. Joint chance constraints, which satisfy multiple constraints simultaneously with a prescribed probability, are one way to incorporate uncertainty across sets of constraints, leading to a chance-constrained optimal power flow problem. Departing from the computationally heavy scenario-based approaches or approximations that transform the joint constraint into conservative deterministic constraints; this paper develops a scalable, data-driven approach which learns operational trends in a power network, eliminates zero-probability events (e.g., inactive constraints), and accurately and efficiently approximates bounds on the joint chance constraint iteratively. In particular, the proposed framework improves upon the classic methods based on the union bound (or Boole’s inequality) by generating a much less conservative set of single chance constraints that also guarantees the satisfaction of the original joint constraint. The proposed framework is evaluated numerically using the IEEE 37-node test feeder, focusing on the problem of voltage regulation in distribution grids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.