Abstract

In this paper, the problem of joint carrier frequency offset (CFO) and channel estimation for OFDM systems over the fast time-varying frequency-selective channel is explored within the framework of the expectation-maximization (EM) algorithm and parametric channel model. Assuming that the path delays are known, a novel iterative pilot-aided algorithm for joint estimation of the multipath Rayleigh channel complex gains (CG) and the carrier frequency offset (CFO) is introduced. Each CG time-variation, within one OFDM symbol, is approximated by a basis expansion model (BEM) representation. An autoregressive (AR) model is built to statistically characterize the variations of the BEM coefficients across the OFDM blocks. In addition to the algorithm, the derivation of the hybrid Cramér-Rao bound (HCRB) for CFO and CGs estimation in our context of very high mobility is provided. We show that the proposed EM has a lower computational complexity than the optimum maximum a posteriori estimator and yet incurs only an insignificant loss in performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.