Abstract
Hyperspectral image (HSI) recovery from a single RGB image has attracted much attention, whose performance has recently been shown to be sensitive to the camera spectral sensitivity (CSS). In this paper, we present an efficient convolutional neural network (CNN) based method, which can jointly select the optimal CSS from a candidate dataset and learn a mapping to recover HSI from a single RGB image captured with this algorithmically selected camera. Given a specific CSS, we first present a HSI recovery network, which accounts for the underlying characteristics of the HSI, including spectral nonlinear mapping and spatial similarity. Later, we append a CSS selection layer onto the recovery network, and the optimal CSS can thus be automatically determined from the network weights under the nonnegative sparse constraint. Experimental results show that our HSI recovery network outperforms state-of-the-art methods in terms of both quantitative metrics and perceptive quality, and the selection layer always returns a CSS consistent to the best one determined by exhaustive search.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.