Abstract

Direct-conversion radio architecture is a low-cost, low-power and small-size design that has been widely employed in today's wireless devices. This architecture, however, induces radio impairments such as I-Q imbalance and dc offset that may incur severe degradation in communication performance if left uncompensated. In this paper, a new method is proposed to calibrate simultaneously a transceiver's own transmitter and receiver radio impairments with no dedicated analog circuit in the feedback loop. Based on a unified time-domain approach, the proposed method is able to calibrate jointly the frequency-independent I-Q imbalance, frequency-dependent I-Q imbalance and dc offset and is applicable to any type of communication systems (single-carrier, multiple-carrier, etc.). The existing methods in the literature either need a dedicated analog circuit in the feedback loop and/or are applicable only to a particular type of systems with some radio impairments present. The issue of training sequence design is also investigated to optimize the calibration performance, and analytical and simulation results show that the performance loss due to radio impairments can be recovered by the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.