Abstract

We consider joint caching, routing, and channel assignment for video delivery over coordinated small-cell cellular systems of the future Internet. We formulate the problem of maximizing the throughput of the system as a linear program, in which the number of variables is very large. To address channel interference, our formulation incorporates the conflict graph that arises when wireless links interfere with each other due to simultaneous transmission. We utilize the column generation method to solve the problem by breaking it into a restricted master subproblem that involves a select subset of variables and a collection of pricing subproblems that select the new variable to be introduced into the restricted master problem, if that leads to a better objective function value. To control the complexity of the column generation optimization further, due to the exponential number of independent sets that arise from the conflict graph, we introduce an approximation algorithm that computes a solution that is within $\epsilon $ to optimality, at much lower complexity. Our framework demonstrates considerable gains in average transmission rate at which the video data can be delivered to the users, over the state-of-the-art Femtocaching system, of up to 46%. These operational gains in system performance map to analogous gains in video application quality, thereby enhancing the user experience considerably.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.