Abstract

To meet the requirement of constrained delay and computation resource of the future vehicular networks, it is imperative to develop efficient content caching strategy and computation resource allocation strategy in mobile edge computing (MEC) servers. In the proposed network framework, since the caching capacity and computing resource of each MEC are limited, and the coverage areas of MECs are overlapped, the vehicular networks have to decide what contents to cache, how to offload tasks and how much computing resource needs to be allocated for each task. In this study, in order to jointly tackle these issues, we formulate caching strategy, offloading decision and computing resource allocation coordinately as a mixed integer non-linear programming (MINLP) problem. To solve the MINLP problem, we divide it into two subproblems. Firstly, we investigate a balanced and efficient caching strategy based on similarity in vehicular networks. Secondly, we apply McCormick Envelopes to convert MINLP problem into LP problem, and then adopt improved branch and bound algorithm to obtain the optimal offloading decision and computing resource allocation strategy. Simulation results indicate that the proposed schemes have a good performance in reducing economic cost under the deadline of each task.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.