Abstract
Given a finite set {Ax}x ∈ X of nonnegative matrices, we derive joint upper and lower bounds for the row sums of the matrices D−1 A(x) D, x ∈ X, where D is a specially chosen nonsingular diagonal matrix. These bounds, depending only on the sparsity patterns of the matrices A(x) and their row sums, are used to obtain joint two-sided bounds for the Perron roots of given nonnegative matrices, joint upper bounds for the spectral radii of given complex matrices, bounds for the joint and lower spectral radii of a matrix set, and conditions sufficient for all convex combinations of given matrices to be Schur stable. Bibliography: 20 titles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.