Abstract

In this paper, we maximize the system throughput of a point-to-point ultra-reliable low-latency communications (URLLC) system by jointly optimizing its block length and pilot length under the constraints of latency and block error probability. A finite block length (FBL) is adopted to enable low transmission latency. We prove that the throughput is approximately concave with respect to pilot length, given a block length, and that there exists a unique optimal block length in terms of throughput, with a given pilot length. Closed-form expressions are derived for the near-optimal pilot length with a given block length, as well as the asymptotic block error probability with respect to both block length and pilot length. A low-complexity iterative algorithm is proposed for joint optimization of block length and pilot length, which converges within only 1-3 iterations. Simulation results show that the proposed joint optimization scheme achieves a near-optimal throughput performance of an FBL URLLC system, with a much lower complexity than exhaustive search. It also significantly outperforms the previous approaches that considered either block length optimization or pilot length optimization only.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.