Abstract

Reconfigurable intelligent surface (RIS) provides a promising way to build the programmable wireless transmission environments in the future. Owing to the large number of reflecting elements used at the RIS, joint optimization for the active beamforming at the transmitter and the passive reflector at the RIS is usually complicated and time-consuming. To address this problem, this article proposes a low-complexity joint beamforming and reflecting algorithm based on fractional programing (FP). Specifically, we first consider a RIS-aided multi-user communication system with perfect channel state information (CSI) and formulate an optimization problem to maximize the sum rate of all users. Since the problem is nonconvex, we decompose the original problem into three disjoint subproblems. By introducing favorable auxiliary variables, we derive the closed-form expressions of the beamforming vectors and reflecting matrix in each subproblem, leading to a joint beamforming and reflecting algorithm with low complexity. We then extend our approach to handle the case when transmitter-RIS and RIS-receiver channels are not perfect and develop corresponding low-complexity joint beamforming and reflecting algorithm with practical channel estimation. Simulation results have verified the effectiveness of the proposed algorithms as compared to various benchmark schemes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call