Abstract

The emergence of more and more computation-intensive applications has imposed higher requirements in spectrum and energy efficiency (EE) for internet of things (IoT) wireless networks. Massive multiple-input multiple-output (MIMO) is utilized to gain spectral efficiency as an important part of wireless systems. However, the power expansion from hardware lowers the massive MIMO performance remarkably. Reconfigurable intelligent surface (RIS) technology can solve this problem well since it can not only provide higher array gain but also reduce energy depletion and hardware expense. In this article, we study joint optimization about beam-forming, RIS phase shift, and energy harvesting of IoT devices for maximizing EE of the multiple-input single-input downlink system with multiple IoT devices and an energy harvesting device. Different from existing works focusing on ergodic capacity with known statistic channel information of BS-RIS-device, we suppose that statistics information of RIS-device is known. Mathematically, the joint optimization problem is cast into a challenging non-convex one. To this end, based on successive convex approximation, we convert the original problem into two parts and then provide two heuristic schemes to tackle them, respectively. Next, an iterative scheme integrated by two heuristic algorithms is proposed to earn feasible solution in polynomial time. Finally, the proposed scheme is verified to be effective by simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call