Abstract

We develop a framework for learning multiple tasks simultaneously, based on sharing features that are common to all tasks, achieved through the use of a modular deep feedforward neural network consisting of shared branches, dealing with the common features of all tasks, and private branches, learning the specific unique aspects of each task. Once an appropriate weight sharing architecture has been established, learning takes place through standard algorithms for feedforward networks, e.g., stochastic gradient descent and its variations. The method deals with meta-learning (such as domain adaptation, transfer and multi-task learning) in a unified fashion, and can deal with data arising from different modalities. Numerical experiments demonstrate the effectiveness of learning in domain adaptation and transfer learning setups, and provide evidence for the flexible and task-oriented representations arising in the network. In particular, we handle transfer learning between multiple tasks in a straightforward manner, as opposed to many competing state-of-the-art methods, that are unable to handle more than two tasks. We also illustrate the network’s ability to distill task-specific and shared features.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call