Abstract

An integration of flying base stations (FlyBSs) into future mobile network allows to manage scenarios with a highly varying density and requests of user equipments (UEs). While this research topic has received plenty of attention, a backhaul link quality (i.e., the link between a static base station and FlyBS) is either fully disregarded or oversimplified. Nevertheless, to exploit radio resources efficiently, the backhaul link and an access link (i.e., the link between the FlyBS and UE) should be managed together. Thus, in this paper, we introduce a novel power efficient and backhaul-aware association of the UEs to either the FlyBSs or the SBSs to maximize the sum capacity of all UEs. The association of UEs is managed joinlty with the transmission power allocation and the UEs are associated according to the transmission power required at the FlyBSs to serve the UEs and the benefits observed by each UE if it is associated to the particular base station. In this regard, we derive a closed-form expression for the optimal allocation of the FlyBSs’ transmission power to individual UEs to exploit the radio resources at backhaul and access links efficiently. Then, the proposed framework is enhanced by a re-positioning of the FlyBSs and a subsequent re-allocation of the transmission power at the FlyBSs to further improve the overall sum capacity. The simulations show that our proposal significantly increases the sum capacity of the UEs (from 19.6% to 135.3%) with respect to state of the art schemes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call