Abstract
As the key component of the image mapping spectrometer, the image mapper introduces complex image degradation in the reconstructed images, including low spatial resolution and intensity artifacts. In this paper, we propose a novel image processing method based on the convolutional neural network to perform artifact correction and super-resolution (SR) simultaneously. The proposed joint network contains two branches to handle the artifact correction task and SR task in parallel. The artifact correction module is designed to remove the artifacts in the image and the SR module is used to improve the spatial resolution. An attention fusion module is constructed to combine the features extracted by the artifact correction and SR modules. The fused features are used to reconstruct an artifact-free high-resolution image. We present extensive simulation results to demonstrate that the proposed joint method outperforms state-of-the-art methods and can be generalized to other image mapper designs. We also provide experimental results to prove the efficiency of the joint network.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.