Abstract

The frequent building collapses in Nigeria have been attributed to a lack of pre-construction investigations, which assist engineers in obtaining in situ geotechnical information. Further, the structural subsurface settings are often ignored or investigation is haphazardly carried out. To address this issue and demonstrate the importance of such a survey, a combination of ground penetrating radar (GPR) and vertical electrical sounding (VES) data were acquired in a part of Southwestern Nigeria. A 200 MHz antenna was used for the data acquisition along four traverses. The data were subjected to standard GPR processing techniques, and attribute analysis such as instantaneous frequency, amplitude and phase. Also, for comparative and engineering characterization purposes, longitudinal conductance and coefficient of anisotropy were computed from the VES results and used for determining the competency of the bedrocks. From the GPR results, it was observed that the mapped subsurface is characterized as erosional truncated at a low angle, which is southerly dipping and includes tangential reflections. Further, stratified rocks dipping at an angle of 32° occur between 1.0 and 4.5 m depth in all of the GPR sections; these strata were truncated by topsoil at shallow depths. Also, some of the sections depict ancient channel structures that have a dimension of 70 m × 40 m. The resistivity data suggest that the study area is characterized by four distinct geoelectric sequences. These comprise topsoil which is composed of clay-like sand to lateritic clay whose thickness ranges between 0.25 and 8.12 m, weathered bedrock with a thickness between 3.84 and 12.61 m, stratified bedrock with a thickness between 0.33 and 7.51 m, and fresh bedrock. These results reveal a complex subsurface geology and this characterizes the study area. The area has low to moderate longitudinal conductance and coefficient of anisotropy values, which suggest that incompetent to semi-competent bedrock exists beneath the subsurface. A good correlation between the GPR and resistivity derived thicknesses was established.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call