Abstract
Multi-input multi-output (MIMO) systems, with multiple antennas at both the transmitter and the receiver, are anticipated to be widely employed in future wireless networks due to their predicted tremendous system capacity. To protect the transmitted data against random channel impairment, it is desirable to consider link adaptation, such as rate adaptation and power control, to improve the system performance and guarantee certain quality of service. Based on the observation that link adaptation and antenna selection problems are often coupled, we propose a joint antenna subset selection and link adaptation study for MIMO systems. After the formulation of the multidimensional joint optimization problem, the main contribution of this paper lies in the design of efficient algorithms approaching the optimal solution for both uncorrelated and correlated MIMO channels. Specifically, we propose one simplified antenna selection and link adaptation rule based on the expected optimal number of active antennas for uncorrelated MIMO with Rayleigh fading and one for correlated MIMO channels only based on the slowly varying channel correlation information. Our proposed algorithms are verified through numerical results, demonstrating significant gains over traditional MIMO signaling, while feasible for practical implementation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.