Abstract

Individuals with anterior cruciate ligament reconstruction (ACLR) generally exhibit limb underloading behaviors during walking, but most research focuses on per-step comparisons. Cumulative loading metrics offer unique insight into joint loading as magnitude, duration, and total steps are considered, but few studies have evaluated if cumulative loads are altered post-ACLR. Here, we evaluated if underloading behaviors are apparent in ACLR limbs when using cumulative load metrics and how load metrics change in response to walking speed modifications. Treadmill walking biomechanics were evaluated in 21 participants with ACLR at three speeds (self-selected (SS); 120% SS and 80% SS). Cumulative loads per step and per kilometer were calculated using knee flexion and adduction moment (KFM and KAM) and vertical ground reaction force (GRF) impulses. Traditional magnitude metrics for KFM, KAM, and GRF were also calculated. The ACLR limb displayed smaller KFM and GRF in early and late stances, but larger KFM and GRF during midstance compared with the contralateral limb ( P < 0.01). Only GRF cumulative loads (per step and per kilometer) were reduced in the ACLR limb ( P < 0.01). In response to speed modifications, load magnitudes generally increased with speed. Conversely, cumulative load metrics (per step and per kilometer) decreased at faster speeds and increased at slow speeds ( P < 0.01). Patients with ACLR underload their knee in the sagittal plane per step, but cumulatively over the course of many steps/distance, this underloading phenomenon was not apparent. Furthermore, cumulative load increased at slower speeds, opposite to what is identified with traditional single-step metrics. Assessing cumulative load metrics may offer additional insight into how load outcomes may be impacted in injured populations or in response to gait modifications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.