Abstract

BackgroundDetection of quantitative trait loci (QTLs) affecting meat quality traits in pigs is crucial for the design of efficient marker-assisted selection programs and to initiate efforts toward the identification of underlying polymorphisms. The RYR1 and PRKAG3 causative mutations, originally identified from major effects on meat characteristics, can be used both as controls for an overall QTL detection strategy for diversely affected traits and as a scale for detected QTL effects. We report on a microsatellite-based QTL detection scan including all autosomes for pig meat quality and carcass composition traits in an F2 population of 1,000 females and barrows resulting from an intercross between a Pietrain and a Large White-Hampshire-Duroc synthetic sire line. Our QTL detection design allowed side-by-side comparison of the RYR1 and PRKAG3 mutation effects seen as QTLs when segregating at low frequencies (0.03-0.08), with independent QTL effects detected from most of the same population, excluding any carrier of these mutations.ResultsLarge QTL effects were detected in the absence of the RYR1 and PRKGA3 mutations, accounting for 12.7% of phenotypic variation in loin colour redness CIE-a* on SSC6 and 15% of phenotypic variation in glycolytic potential on SSC1. We detected 8 significant QTLs with effects on meat quality traits and 20 significant QTLs for carcass composition and growth traits under these conditions. In control analyses including mutation carriers, RYR1 and PRKAG3 mutations were detected as QTLs, from highly significant to suggestive, and explained 53% to 5% of the phenotypic variance according to the trait.ConclusionsOur results suggest that part of muscle development and backfat thickness effects commonly attributed to the RYR1 mutation may be a consequence of linkage with independent QTLs affecting those traits. The proportion of variation explained by the most significant QTLs detected in this work is close to the influence of major-effect mutations on the least affected traits, but is one order of magnitude lower than effect on variance of traits primarily affected by these causative mutations. This suggests that uncovering physiological traits directly affected by genetic polymorphisms would be an appropriate approach for further characterization of QTLs.

Highlights

  • Detection of quantitative trait loci (QTLs) affecting meat quality traits in pigs is crucial for the design of efficient marker-assisted selection programs and to initiate efforts toward the identification of underlying polymorphisms

  • The exclusion of RYR1 mutation carriers from the QTL analysis does not stop detection of significant QTLs for those two carcass composition traits at the same chromosome locations (Figure 3, Additional File 3). For each of those two traits, our result suggests that in addition to the RYR1 mutation, an independent QTL located at a neighbouring location is segregating in this population

  • QTLs were identified for most the meat quality and carcass composition traits analyzed, but more QTLs were detected for fat deposition, muscle development, and meat colour

Read more

Summary

Introduction

Detection of quantitative trait loci (QTLs) affecting meat quality traits in pigs is crucial for the design of efficient marker-assisted selection programs and to initiate efforts toward the identification of underlying polymorphisms. With the benefits of genetic marker-assisted selection in mind, several studies of quantitative trait loci (QTLs) have dissected the genetic variation of meat quality traits in a range of swine populations, initially in exotic crosses to maximize segregating variation (Meishan, Erhualian and wild boar [4,5,6,7,8]) and in more typical pig breeds used in pork production (Large-White, Duroc and Pietrain [9,10,11,12,13,14,15,16])

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call