Abstract
Time-sensitive networks (TSNs) support not only traditional best-effort communications but also deterministic communications, which send each packet at a deterministic time so that the data transmissions of networked control systems can be precisely scheduled to guarantee hard real-time constraints. No-wait scheduling is suitable for such TSNs and generates the schedules of deterministic communications with the minimal network resources so that all of the remaining resources can be used to improve the throughput of best-effort communications. However, due to inappropriate message fragmentation, the realtime performance of no-wait scheduling algorithms is reduced. Therefore, in this paper, joint algorithms of message fragmentation and no-wait scheduling are proposed. First, a specification for the joint problem based on optimization modulo theories is proposed so that off-the-shelf solvers can be used to find optimal solutions. Second, to improve the scalability of our algorithm, the worst-case delay of messages is analyzed, and then, based on the analysis, a heuristic algorithm is proposed to construct low-delay schedules. Finally, we conduct extensive test cases to evaluate our proposed algorithms. The evaluation results indicate that, compared to existing algorithms, the proposed joint algorithm improves schedulability by up to 50%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.