Abstract
Supported by some of the major revolutionary technologies, such as Internet of Vehicles (IoVs), Edge Computing, and Machine Learning (ML), the traditional Vehicular Networks (VNs) are changing drastically and converging rapidly into one of the most complex, highly intelligent, and advanced networking systems, mostly known as Intelligent Transportation System (ITS). Recently, distributed ML techniques, such as Federated Learning (FL) have gained huge popularity mainly for their advantages in terms of intelligence sharing and privacy concerns. VNs are a natural contender for exploiting FL for solving challenging problems; however, their limited resources, dynamic nature, high speed, and reduced latency requirements often become the bottleneck. V2X communication technologies allow vehicular terminals (VTs) to share their valuable local environment parameters and become aware of their surroundings. Such information can be utilized to build a more sustainable and affordable FL platform for serving VTs. Gaining from recently introduced 3D architectures, integrating terrestrial and aerial edge computing layers, we present here a distributed FL platform able to distribute the FL process on a 3D fashion while reducing the overall communication cost for providing vehicular services. The framework is defined as a constrained optimization problem for reducing the overall FL process cost through a proper network selection between various nodes. We have modeled the FL network selection problem as a sequential decision-making process through a Markov Decision Process (MDP) with time-dependent state transition probabilities. A computation-efficient value iteration algorithm is adapted for solving the MDP. Comparison with various benchmark methods shows the overall improvement in terms of latency, energy, and FL performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Intelligent Transportation Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.