Abstract
In this paper, the joint plant and measurement control problem of linear, unknown, discrete time systems excited by white Ganssian noise is considered. The performance criterion is quadratic in the state and is additive in the plant and measurement control. The adaptive control solution is obtained by approximating the dynamic programming equation-the approximation amounts to replacing the optimal adaptive cost-to-go in the dynamic programming equation by the average value of the truly optimum cost-to-go for each admissible model. In our solution, the adaptive plant and measurement control schemes can be separated. The adaptive plant control is given by the product of the weighted integrals with the a posteriori probability of the parameter as weights. The adaptive measurement control scheme is obtained as the solution of a constrained nonlinear, optimization problem for each time; the constraint equations being the error covatiance matrix equations in the Kalman filter. An illustrative example of the optimum timing of measurements is discussed where the joint adaptive control scheme is simulated and its performance is compared with the optimum value of the performance if the system parameters were completely known.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.