Abstract

Joint human activity localization and recognition has broad application prospects in human-computer interaction, virtual reality, smart healthcare system, security monitoring and robotics. Ultra-wideband (UWB) is an emerging technology adopted in real-time location system (RTLS) and has shown satisfactory performance in the task of human activity localization. However, few studies have been carried out to simultaneously recognize human activities based on UWB RTLS, which limits the use of UWB RTLS in many applications. In this study, we develop a RTLS based on UWB for the joint task of activity localization and recognition. A compressed sensing-based activity recognition approach is proposed for the task of activity recognition and several machine learning methods are designed to further improve the activity localization accuracy for the task of activity localization. The experimental results show that our UWB RTLS achieves good performance in this joint task.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.