Abstract

Massive device connectivity is a crucial communication challenge for Internet of Things (IoT) networks, which consist of a large number of devices with sporadic traffic. In each coherence block, the serving base station needs to identify the active devices and estimate their channel state information for effective communication. By exploiting the sparsity pattern of data transmission, we develop a structured group sparsity estimation method to simultaneously detect the active devices and estimate the corresponding channels. This method significantly reduces the signature sequence length while supporting massive IoT access. To determine the optimal signature sequence length, we study the phase transition behavior of the group sparsity estimation problem. Specifically, user activity can be successfully estimated with a high probability when the signature sequence length exceeds a threshold; otherwise, it fails with a high probability. The location and width of the phase transition region are characterized via the theory of conic integral geometry. We further develop a smoothing method to solve the high-dimensional structured estimation problem with a given limited time budget. This is achieved by sharply characterizing the convergence rate in terms of the smoothing parameter, signature sequence length and estimation accuracy, yielding a tradeoff between the estimation accuracy and computational cost. Numerical results are provided to illustrate the accuracy of our theoretical results and the benefits of smoothing techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.