Abstract

Performing joint detection of activity and data is a promising approach to reduce management overhead in Machine-to-Machine communication. However, erroneous activity detection has severe impacts on the system performance. Estimating an active node or user erroneously to be inactive results in a loss of data. To optimally balance activity and data detection, we derive a novel joint activity and data detector that bases on the minimization of the Bayes Risk. The Bayes Risk detector allows to control error rates with respect to the activity detection dynamically by a parameter that can be controlled by higher layers. In this paper we derive the Bayes Risk detector for a general linear system and present exemplary results for a specific Machine-to-Machine communication scenario.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.